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Abstract: Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While
raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur
due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in
humans. The raw milk cheese-making process concentrates certain milk macromolecules such as
proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to
continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane
(MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In
this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the con-
sequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.

Keywords: STEC; MFGM; raw milk cheese; anti-adhesion strategy

1. Introduction

In the Code of Hygienic Practice for Milk and Milk Products (Codex Alimentarius,
2004), raw milk is defined as milk that has not been heated beyond 40 ◦C or undergone
any treatment that has an equivalent effect. Raw milk is an oil-in-water type emulsion and
contains almost 900 g of water and 130 g of dry matter, in varying proportions [1]. Milk is a
major source of calcium, and also an important supply of proteins, for those who consume
it (newborn mammals and humans). Milk contains all essential amino acids, lipids, fatty
acids, vitamins, and lactose [2]. One liter of whole milk contains approximately 38 g of fat,
which is present mainly in the form of milk fat globules (MFGs) [3].

Raw milk cheeses are made from raw cow, sheep, or goat milk. Different cheese-
making processes can be applied to create the end-products. The various combinations
of ingredients (such as milk and cultures) and cheese-making processes result in a large
diversity of cheeses. No less than 1200 different cheeses are made in France [4]. These
include ripened or unripened soft, semi-hard, hard, or extra-hard products, which may
be coated, uncooked, or cooked pressed cheeses (with short or long ripening), blue-type
cheeses, lactic cheeses, and white mold cheeses.

Raw milk is unstable due to the presence of microflora and, therefore, is often treated
to optimize its conservation and to prevent microbiological hazards. The microbiota of
raw milk is complex and is derived from many sources, including direct contact with the
animal (teats, hides, and feces), the surface of milking equipment (particularly if hygiene
practices are poor), housing, bedding, feed, air, and water [5–7]. On the one hand, this
dynamic bacterial community plays several beneficial roles in subsequent dairy products
such as facilitating fermentation and promoting the health of consumers. On the other hand,
microbiota can contain spoilage or pathogenic bacteria [5]. The milk microbiota is almost
eliminated during heat treatment, such as ultra-high temperature (UHT) sterilization, and
microfiltration, while in raw milk the microbiota is preserved. Different studies have shown
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that the raw milk microbiota is useful to the human digestive system; therefore, it may be
beneficial to preserve it [5,8]. In addition, the raw milk microbiota gives raw milk cheeses
more varied and intense flavors than heat-treated milk cheeses. The raw milk microbiota
can also influence the human intestinal microbiota, which contributes significantly to
human health, for example, by modulating the immune system. The consumption of raw
milk and raw milk cheeses can also reduce blood pressure in people with mild to moderate
hypertension [9] and decrease allergies in infants [10,11]. However, the risk–benefit ratio of
consuming raw milk products is difficult to estimate. Nevertheless, in France, it is strongly
recommended to avoid giving raw milk products to children under 5 years old, pregnant
women, and immunocompromised patients [12]. If poor hygiene procedures have been
applied, particularly during milking, raw milk may be contaminated by pathogenic bacteria
such as Shiga toxin-producing Escherichia coli (STEC).

STEC are foodborne zoonotic bacteria associated with large-scale epidemics that
represent a major public health problem. Human STEC infection is most often linked to
the ingestion of contaminated food and water, such as undercooked ground meat, raw
milk cheeses, or raw vegetables. Raw milk and raw milk cheeses have been linked to
foodborne infections associated with STEC in humans from different countries [13–20].
Ruminants are the primary reservoir of STEC. Milk is most often contaminated by feces
(directly or indirectly) during the milking process. STEC are very frequently associated with
severe forms of infection such as hemorrhagic colitis and, in very severe cases, systemic
complications including hemolytic uremic syndrome (HUS). HUS is the leading cause of
renal failure in children under 3 years of age. The estimated infectious dose is very low:
between 5 and 50 viable cells [21,22].

The proportion of milk and dairy products involved in Rapid Alert System for Food
and Feed (RASFF) notifications issued due to food contamination with STEC is very low
compared to those involving meat products [23]. The RASFF is a European communication
tool used when public health microbiological hazards are detected in the food chain and
food products. In 2013, two RASFF notifications were related to STEC-contaminated dairy
products versus 68 for meat products. In 2014, four RASFF notifications of dairy products
contaminated with STEC were listed, compared with 53 for meat products. Likewise, there
were 7 versus 16, 8 versus 26, and 4 versus 49 dairy-related and meat-related notifications,
respectively, in 2015, 2016, and 2017 [23]. Furthermore, epidemiological studies have
shown that this class of product is only a minor source of human enteric infection [24–26].
Interestingly, prevalence data on these enteropathogens in dairy matrices and ingestion-
related outbreaks do not fit overall foodborne-related outbreak figures [26]. A study led by
Douëllou et al. [27] showed that there were no differences in the key virulence properties
of dairy STEC isolates compared with human isolates. The same authors hypothesized
that this phenomenon might be related to an association between STEC and MFGs, thus
inhibiting STEC adhesion to enterocytes.

Milk fat globules (MFGs) have a positive impact on the immune system, and their
antimicrobial properties have been largely described [28–31]. The positive action of MFGs
on human health seems to be carried out by the membrane (and membrane components)
surrounding the globules. MFGs are small lipid droplets formed by a core of triacylglycerols
(TAGs) and enveloped by a biological phospholipid triple membrane, the milk fat globule
membrane (MFGM), which is derived from mammary epithelial cells [32]. The outer bilayer
of the MFGM contains diverse (glyco)-proteins and (glyco)-lipids on its surface [33]. These
glycoconjugates make up the glycocalyx and act as a source of specific bacterial and viral
ligands [29,34].

The objective of this review is to provide an update on the interaction between STEC
and raw MFGs and to highlight the implications of this interaction. First, we will review the
impact of STEC in the raw milk sector. Then, we will review the mechanisms of association
between STEC and fat globules. We will conclude with the beneficial and detrimental
consequences of this association.
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2. Raw Milk Sector and STEC
2.1. Importance of Raw Milk Cheeses

Cheeses are products with high added value and significant economic importance in
France and Europe. In 2019, the annual cheese consumption per inhabitant was 26.8 kg in
France and 19.1 kg in all of Europe [35]. In total, 10,630,000 t of cheese were produced in
Europe in 2019 [35]. In France, cheeses represent one of the main food industries, worth
approximately EUR 38.7 billion in 2017 [36]. In 2019, with all milk processing combined,
French cheese production included 1,664,632 t of cow’s milk cheese, 99,265 t of goat’s
milk cheese, and 59,638 t of sheep’s milk cheese [35]. The production of raw milk cheese
accounted for 172,128 t of the cow’s milk cheese, 20,872 t of the sheep’s milk cheese, and
9691 t of the goat’s milk cheese produced in France in 2019 [35]. Raw milk cheeses represent
the vast majority of farmhouse dairy products and approximately 75% of the volume of
cheeses marketed under quality and origin identification signs (SIQO), including protected
designations of origin (PDO) and protected geographical indications (PGI). Finally, a study
has shown that 75% of French people consume raw milk cheeses at least once a month and
that 33% of French people consume raw milk cheeses every week [37]. In contrast, no data
on the worldwide consumption or production of raw milk cheeses are currently available.

Raw milk cheeses are part of French and European food heritage and are an essential
tool to enhance product value and to create dynamism in our territories. They are part
of a dynamic of rural development and land use planning; their production avoids the
desertification of certain areas by providing a significant source of income for farmers.
They are often produced under a PDO quality label. Raw milk cheeses encourage variety
and diversification of production and contribute to the sustainability of rural economies.
They protect traditional production areas, enhance the recognized know-how of operators,
and facilitate, especially for small producers, the marketing of differentiated products with
specific and clearly identifiable characteristics. In France, the competent authorities as well
as scientists recognize the importance of raw milk cheese both in terms of gastronomic
heritage and regional socio-economic development. At the same time, authorities and
scientists seek to support the industry by improving scientific knowledge about STEC and
developing methods for the control and surveillance of this bacteria from farm to fork.

2.2. STEC

STEC are foodborne zoonotic bacteria associated with large-scale epidemics that
represent a major public health problem. Ruminants (cattle, buffalo, goats, and sheep) are
the main reservoir of STEC [38,39]. Infected ruminants can be asymptomatic, harboring
the bacteria in their gastrointestinal tract and shedding bacteria in their feces [40–42].
Detailed investigations have shown that without proper cleaning methods and udder
hygiene practices, feces can contaminate the teats and udders of animals and cause milk
contamination during milking [43]. When STEC-contaminated milk is used to produce raw
milk cheeses, STEC can survive and be isolated in some cheeses.

The pathogenesis of STEC-related disease generally involves three phases: (i) inges-
tion of contaminated food; (ii) colonization of the intestinal epithelium by STEC; and
(iii) production of Shiga toxins (Stx) that disrupt normal cellular functions and damage
cells. Stx are the main virulence factors of STEC. The Stx family includes all toxins with a
similar structure and biological activity. Based on their different in vitro and in vivo toxicity,
amino acid sequences, or nucleotide sequences of the stx genes, two major types of Shiga
toxins, Stx1 and Stx2, and numerous variants (Stx1a to Stx1d and Stx2a to Stx2k) have been
identified [44–47]. To effectively colonize a host and cause disease, STEC have evolved
mechanisms and strategies for attaching or adhering to host cells and tissues [48]. Adhe-
sion is required so that STEC cells are not swept away by the host’s natural self-cleaning
mechanisms. An arsenal of STEC surface adhesion factors have been described (Figure 1).
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Figure 1. Schematic drawing of STEC adhesion factors and the bovine MFGM. STEC have an
arsenal of protein structures involved in host cell adhesion. However, the adhesion mechanisms that
contribute to the pathogenicity of STEC are not fully understood, and the receptors recognized by
these adhesion factors are not all known. Nevertheless, some pili, autotransporters, and flagella can
bind to host extracellular matrix (ECM) components such as fibronectin and laminin (glycoproteins).
The MFGM is a complex trilayered structure, comprising a monolayer of polar lipids derived from
endoplasmic reticulum (IM: inner membrane) and a bilayer of polar lipids originating from the apical
plasma membrane of mammary secretory cells (OM: outer membrane). The structures drawn do not
necessarily reflect the actual structures of the macromolecules and are not to scale. CM: Cytoplasmic
membrane; PGN: Peptidoglycan; OM: Outer membrane; LPS: Lipopolysaccharide; LP: Lipoprotein;
Tir: Translocated intimin receptor; T3SS: Type 3 secretion system; HCM: Host cytoplasmic membrane;
CPS: Capsular polysaccharide; EPS: Extracellular polysaccharide; LpfA: Long polar fimbria subunit
A; CsgA: Major curlin subunit; EcpA: E. coli common pilus subunit A; FmlA: Type-1 fimbria subunit
A; ElfA: laminin-binding fimbria subunit A; SfpA: sorbitol-fermenting fimbria subunit A; FimH: Type
1 fimbrin D-mannose specific adhesin; HcpA: Hemorrhagic coli pilus subunit A; SfaA: S-fimbria
subunit A; AggB: Aggregative adherence fimbria I subunit B; YbgD: Putative fimbria Ybg subunit A;
YehA: Putative fimbria Yeh subunit A; Cah: Calcium-binding antigen 43 homologue; AIDA-I: Adhesin
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involved in diffuse adherence; Eha: Enterohaemorrhagic E. coli autotransporter; Ag43: Antigen 43;
EspP: Extracellular serine protease plasmid encoded; EspC: EPEC-secreted protein C; PssA: Protease
secreted by STEC; EibG: E. coli immunoglobulin-binding protein G; Saa: STEC autoagglutinating
adhesion autotransporter; Sab: STEC autotransporter contributing to biofilm formation; Paa: porcine
A/E-associated protein; Efa1: EHEC factor for adherence; Iha: IrgA homologue adhesin; OmpA:
Outer membrane protein A; ToxB: Toxin B; Slp: Carbon starvation-inducible lipoprotein; FdeC: Factor
adherence E. coli; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase. MUC1/MUC15: Mucin
1/15; LDH: Lactadherin; ADPH: Adipophilin; BTN: Butyrophilin; XDH/XO: Xanthine dehydroge-
nase/oxidase; CD36: Cluster of differentiation 36; PP3: Proteose peptone 3; TAG: triacylglycerols.

The ability to adhere to the intestinal epithelium and colonize the intestine undeniably
contributes to the pathogenic processes of STEC cells. Thus, the vast majority of clinical
isolates known to cause bloody diarrhea or HUS have one or more virulence factors that
allow their adhesion to intestinal epithelial cells [44]. The major adhesion factor of clinical
STEC isolates is intimin [49], a protein encoded by the eae gene that resides in the locus of an
enterocyte effacement pathogenicity island (LEE). The pathophysiology of clinical isolates
possessing the eae gene is characterized by the development of enterocyte attachment-
effacement (A/E) lesions. These lesions are responsible for the diarrhea observed in
patients [49]. Intimin attachment to the host cell requires an upstream connection of the
STEC cell to the host cell cytoplasm [48]. Intimin binds to the translocated intimin receptor
(Tir) protein, which is encoded by STEC and translocated into the host cell cytoplasm using
a type III secretion system (T3SS) and then inserted into the host cell membrane. Although
STEC isolates carrying the eae gene represent the vast majority of human infections, some
STEC lacking the eae gene have been isolated from patients [50,51]. An early adhesion
phase involving other adhesion factors may occur before, or in parallel with, the formation
of the highly specific intimin/Tir bond. Intimin can also bind, with less specificity and
strength, to certain host cell surface components such as integrin and nucleolin, and this
may contribute to STEC–host cell adhesion [52–54]. Some studies suggest involvement
of the long polar fimbriae (LPF), which recognizes moieties of eukaryotic extracellular
matrix (ECM) components [55,56]. Molecular characterization studies of STEC isolates have
also identified paa, efa1, ompA, saa, sab, toxB, and aggR as genes encoding virulence factors
involved in adhesion [57–59]. Flagella are also involved in STEC adhesion by binding
to mucus and mucin proteins [60]. Other proteins can interact with immunoglobulins,
for example, E. coli immunoglobulin-binding protein (Eib) [61,62]. The complete list of
virulence factors, the timing of their expression, and the mechanisms involved in STEC
pathogenicity are not yet fully known. Current knowledge of STEC surface proteins
is summarized in Figure 1. STEC adhesion mechanisms are further detailed in these
articles: [48,59,63].

2.3. Milk Fat Globules

MFGs can be distinguished from other forms of fat by the milk fat globule mem-
brane (MFGM) that surrounds a core of triacylglycerols (TAGs) (Figure 1). Complex
fat supramolecular organizations are also found in egg yolk or oilseeds in the form of
oleosomes [64]. The MFGM is made of phospho- and sphingolipids, cholesterol, and
proteins [65,66]. As a consequence of the mechanism of milk fat secretion from mammary
epithelial cells, the MFGM is a complex trilayered structure, comprising a monolayer of po-
lar lipids derived from the endoplasmic reticulum and a bilayer of polar lipids originating
from the apical plasma membrane of the mammary secretory cells [67–69]. The MFG size is
dependent on the origin of the milk. Bovine MFGs have a mean diameter of 4 µm, while
MFGs from goat (3.19 µm), camel (2.99 µm), and sheep raw milk (3.78 µm) are all smaller,
and MFGs from buffalo (8.7 µm) are much larger [70]. The main MFGM (glyco)-proteins
include glycoproteins mucin 1 and 15 (MUC1; MUC15), the redox enzyme xanthine dehy-
drogenase/oxidase (XDH/XO), butyrophilin (BTN), cluster of differentiation 36 (CD36),
lactadherin (LDH); and two proteins: adipophilin (ADPH) and fatty-acid binding protein
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(FABP) [29,71]. For a more complete description of MFGs and MFGM, we refer the reader
to these articles: [69,72,73].

3. STEC in Raw Milk Cheeses
3.1. Prevalence and Behavior of STEC in Raw Milk Cheeses

The most comprehensive studies on the prevalence of STEC in cheeses have been
conducted in Europe and show that the prevalence of STEC varies from 0% to 13.1%,
depending on the study [74]. In France in 2009, 2014, and 2018, surveillance plans assessed
the prevalence of specific STEC isolates (E. coli possessing the eae and stx genes and
belonging to O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 serotypes) in raw
milk cheeses. These studies showed a prevalence of 0.9%, 0.2%, and 0.8% in the raw
milk cheese studied in 2009, 2014, and 2018, respectively. In 2016, researchers in a French
study evaluated the genetic diversity and virulence gene profiles of STEC isolated from
dairy products [27]. They showed that the 197 studied isolates displayed a high genetic
diversity regardless of their serotype, with Simpson’s Diversity Index ranging from 1.0
to 0.9615. In addition, their results suggested that the virulence gene profiles of the dairy
isolates are a potential hazard. Nevertheless, for the isolate most frequently found in dairy
products, O26:H11 STEC, gene expression was similar between human and dairy isolates
except for stx1 (44% vs. 87%) and stx2 (81% vs. 23%) expression. It is important to keep
in mind that Stx2 has stronger cytotoxicity than Stx1 [75]. A French team showed that
during the manufacture of different types of cheese experimentally contaminated with
STEC strains, there was no statistically significant strain effect for the same serotype [76,77].
However, only a few different strains were tested for each serotype. Interestingly, a serotype
effect was observed in certain types of cheese. Researchers observed less growth of the
serotype O157:H7 strains than of the serotype O26:H11, O103:H2, and O145:H28 strains.
They hypothesized that strains belonging to serotypes O26:H11, O103:H2, and O145:H28
could be more adapted to the conditions (physicochemical parameters and microbiota)
encountered in cheeses.

3.2. Impact of Cheese-Making Parameters on STEC and MFGs

The different processing steps applied and the origin of the raw milk used (e.g., cow,
buffalo, goat, or sheep) can influence the behavior and survival of STEC [76]. The behavior
of STEC (survival, growth, or inactivation) can also be influenced by temperature and
by the intrinsic physicochemical properties (pH, aw, and % lactic acid) of, and the other
microflora present in, the raw milk microbiota and added starters used in different cheeses
during their manufacture. At the initial stages of cheese-making, the temperature (around
30 ◦C) and aw value of milk provide favorable conditions for the growth of STEC and an
increase in STEC level by 1–3 log CFU/g can occur [76,77]. Then, the rapid acidification
(pH > 4.3) encountered during the manufacture of certain cheeses can reduce STEC cell
counts by 1–4 log CFU/g, depending on the STEC serotype and the type of cheese [76,78].
Various studies have shown that when ripening is long and, therefore, the aw is low, STEC
numbers decrease [76]. Nevertheless, while ripening can reduce the number of STEC cells,
it cannot ensure the safety of the product if the raw milk is contaminated with STEC [79,80].
The environmental conditions during cheese processing generate stress for STEC, which
can affect gene expression. Although little is known about the physiological state of STEC in
cheese at different stages of production, it has been shown that the cheese-making process
can trigger the production of Stx phages [81].

The various milk treatments for cheese processing also impact MFG and MFGM in-
tegrity and, consequently, the molecules involved in the MFGM–bacteria association [29,82].
Such treatments include high-temperature treatments [83,84], homogenization, and en-
zymatic reactions [85]. One must keep in mind that for raw milk cheeses, the curd is
never heated above 54 ◦C. Heat treatments that kill or limit bacterial growth can also dam-
age heat-sensitive compounds, such as glycoconjugates and associated oligosaccharides,
located on the MFGM surface. Carbohydrate epitopes are well-known targets of bacte-
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rial adhesion [86]. Homogenization reduces the diameter of MFGs (ranging from 0.1 to
0.5 µm [82]) and increases the total MFGM surface area available to bacteria. Furthermore,
homogenization can alter MFGM composition [84,85,87]. Treatments applied during cheese
production may also alter the environment and the ability of STEC to adhere to the MFGM.
In addition, physical forces applied in some cheese processing (e.g., pressed cheeses) can
lead to detachment of the MFGM and their dispersion either in the product or in the whey,
which will be eliminated. Nevertheless, glycoconjugates may remain intact through to
end-consumption in non-pasteurized dairy products.

3.3. Location of STEC in Raw Milk Cheeses

Douëllou et al. used epifluorescence microscopy and a specific antibody coupled
to FITC to assess bovine raw milk and concluded that both STEC strains assayed were
localized near MFGs [88]. A natural raw milk creaming saturation assay with STEC
revealed a strain-dependent tropism for the bovine raw milk cream layer and a distinct
half-saturation point (8.5–9 log10 CFU.mL−1). Similar observations were presented by
Brewster and Paul, suggesting that the cream layer exhibits a high capacity for E. coli
O157:H7, Listeria monocytogenes, and Salmonella enterica [89]. Bacterial purification from
milk by creaming seems to be not species-specific but rather general to bacteria.

The discrimination of specific bacteria in a complex product, such as raw milk cheese,
is a true challenge. Furthermore, due to the modifications to milk and the MFG struc-
ture that occur during the cheese-making process, bacterial localization can vary. At the
macroscopic scale, Miszczycha et al. showed that in experimentally inoculated cheeses,
the levels of STEC strains belonging to serotypes O103:H2 and O145:H28 were statistically
similar in the core and in the rind, regardless of the ripening conditions (traditional or
industrial) [76]. The levels of serotype O26:H11 were also statistically similar in the rind.
Bacterial localization in raw milk cheese has also been realized by morphologic observa-
tion on electronic micrographs [90–93] or by nonspecific DNA staining and assessment
by fluorescent microscopy [90,94,95]. One study observed fluorescent mCherry-tagged
Lactobacillus reuteri in raw milk [96]. However, to the authors’ knowledge, no study focusing
on the localization of STEC or other pathogenic bacteria during the cheese production
process has been published.

At the microscopic scale, the localization of bacteria in other dairy products, such
as fermented milk, is poorly documented. Overall, few studies have focused on the
localization of STEC in dairy products. More work is needed to understand STEC behavior
in raw milk cheeses and their interaction with MFGs. Based on the available literature
describing other bacteria [95,97,98], STEC could potentially localize near MFGs, in serum
pockets, or the protein network.

4. The Mechanism of STEC-MFG Association: What Do We Know?
4.1. General Information on Bacterial Adhesion

Bacterial adhesion is a complex process involving several factors, including: (i) surface-
related properties (hydrophobicity, electrical charge, roughness, and topology); (ii) cell
morphological properties (size, volume, dimension, and shape); (iii) the cell surface (chemi-
cal properties, envelope type, exposed proteins, and exopolysaccharide (EPS)); and (iv) the
cell’s ability to move [99]. Adhesion is a key step for bacteria (pathogenic or not), allowing
colonization and growth at a host-specific site [100]. The bacterial adhesion process consists
of two phases: a non-specific phase, involving physicochemical bonds, and a specific phase
involving molecular factors exposed on both host and bacterial cell surface [101]. The
STEC–MFG association can be seen as a host–bacteria adhesion facilitated by the origin of
the MFGM and its similarities with the membrane of intestinal cells [29,68]. In this context,
both biological membranes will interact together through surface components. Various
glycoconjugates are anchored on the MFGM surface (Figure 2) and can act as ligands.
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4.2. Physicochemical Interactions

Non-specific interactions have been described as the first step of adhesion, which is
reversible and occurs rapidly (in the order of ~1 min) [102]. The process of initial bacterial
adhesion is still not clearly understood, and physicians and microbiologists are working
together to clarify the mechanisms. It is widely accepted that bacterial interaction is
conducted according to the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory [103]
and the extended DLVO theory [104]. The DLVO theory describes the force between charged
surfaces interacting through a liquid. However, this theory may not be appropriate for
modeling bacterial adhesion owing to the numerous processes involved and the influence of
both biological and environmental factors (pH, ionic strength, and temperature) [105,106].
The non-specific phase of adhesion is a consequence of the balance between attractive
and repulsive forces that are set up between the bacterium and the surface where it could
adhere [107,108]. These forces include non-covalent interactions such as electrostatic
interactions or surface charges, van der Waals forces, and Lewis acid/base interactions, as
well as hydrophobic interactions [109,110]. Hydrophobic interactions and surface charges
are the primary forces influencing bacterial adhesion [111].

4.2.1. Cell Surface Hydrophobicity

Bacterial cell surface hydrophobicity (CSH) is probably one of the major phenomena
that governs bacterial attachment to a surface [109,110]. Hydrophobic interactions are
defined as the ability of two elements of similar hydrophobicity to attract each other [112].
These forces are affected by the nature of their membrane-anchored components, including
amino residues that are exposed to the extracellular environment [113]. In the context
of STEC and MFGs, both are surrounded by a protein-rich membrane whose anchored
surface components have polar properties (e.g., proteins and phospholipids) leading to
weak hydrophobic repulsions [114,115]. Interestingly, Brisson et al. showed that the
adhesion of Lactobacillus reuteri to MFGs was strain-dependent, and the more the strain was
hydrophobic, the more it adhered [94].

4.2.2. Electrostatic Forces

Electrostatic forces result from the presence of a double ionic layer at the surface of a
particle. The bacterial cell surface is generally negatively charged because of the carboxyl
and phosphate core as well as the lipopolysaccharide (LPS) located at the surface [116].
E. coli surface charge is between −30 and −45 mV at milk pH [117,118]. While there are no
published STEC-specific surface charge data generated with a modern instrument, some
studies have shown that STEC isolates or reference strains are weakly negative [119,120].
Native MFGs are negatively charged due to the high phospholipid content of the outer
layer of the MFGM [121]. The ζ-potential of native MFGs is close to −13 mV [122–124]. Fur-
thermore, Malik et al. showed that the MFGM fraction could reach −20 mV at pH 6.5 [125].
When a negative surface meets another negative surface, repulsive forces are produced.
Thus, in theory, MFGs and STEC should repel each other. However, it is important to note
that the bacterial surface charge should be measured in an appropriate buffer that mimics
the properties of raw milk, such as milk ultrafiltration permeate. There is a lack of recent
experimental data with appropriate physicochemical conditions to assess the involvement
of these forces in the association of STEC with MFGs.

4.2.3. Van der Waals Forces

Van der Waals interactions are long-range attractive forces present in both polar and
non-polar molecules and come mainly from the fluctuation of the internal charge of a
particle. These forces are generally attractive and result from induced dipole interactions
between molecules in a colloidal particle and a substrate [126]. Attractive van der Waals
forces are ubiquitous between molecules [127] and could explain part of the interaction
between bacteria and the MFGM. However, van der Waals interactions in MFGM–bacteria
adhesion have not been studied.
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4.2.4. Lewis Acid/Base Interactions

The Lewis acid/base interaction is a polar interaction where acceptor/donor electrons
enable the formation of hydrogen bonds also known as Lewis bonds [128]. This link occurs
whenever ligands of strong electronegativity are associated with hydrogen. These short-
range bonds are strong electrostatic interactions. Kiely and Olson showed that L. casei
strains and MFGs behaved as electron donors and could mediate bonds [129,130]. However,
the role of Lewis bonds in MFGM–bacteria adhesion was not fully investigated.

4.3. Specific Molecular Interactions

Bacterial molecules involved in adhesion, called adhesins, recognize specific oligosac-
charide moieties or peptide residues on the surface of target cells. There are many different
adhesins, including porins, complex protein structures, glycoproteins, and glycolipids.
Three main types of adhesin–receptor interactions have been described: lectin–glycan;
protein–protein; and hydrophobin–protein [131]. Lectins are key factors in bacterial ad-
hesion mechanisms [132–134]. Lectins are adhesins that recognize glycoconjugates, the
sugar epitopes generally associated with proteins or lipids. Glycoconjugates are polymeric
carbohydrates composed of monosaccharides arranged in chains and preferentially present
on the external leaflet either attached to lipids or proteins [135]. Commonly, the polysac-
charides of glycoconjugates are referred to as the ‘glycan layer’ or ‘glycocalyx’ [136]. The
glycocalyx is directly exposed to the environment, allowing interactions with other cells to
facilitate cell communication, immune regulation, and adhesion [137].

A wide range of STEC isolates can be responsible for human infections, and these
can be genetically different [138]. However, regardless of the strain or serogroup, STEC
possess virulence factors (Figure 1) that allow attachment to intestinal epithelial cells (IECs),
and these adhesion factors are generally considered essential for infection. A large range
of polysaccharides exists, but only a subset is exposed at the cell surface where they can
be recognized by complementary receptors. Adhesins can be found at the distal end of
bacterial pili (or fimbriae). These are bacterial extracellular appendages approximately 1 to
20 µm long and <2 to 10 nm in diameter [139]. Other adhesins are anchored directly in the
biological membrane of bacteria and are referred to as afimbrial adhesins [59,63].

4.3.1. MFGM as a Decoy Receptor for STEC

Douëllou et al. showed that raw milk reduced the adhesion of two STEC strains
(O157:H7 str. EDL933 and O26:H11 str. 21765) to intestinal cells in vitro and in vivo,
whereas pasteurized milk did not [88]. Furthermore, Brewster and Paul showed that more
than 98% of the pathogenic bacteria (including STEC) added to pasteurized or homogenized
milk were recovered in the pellet after centrifugation, while less than 7% were recovered
from raw milk, suggesting that processing could weaken the MFG–bacteria association [89].
Another study demonstrated that only MFGM proteins and glycoproteins inhibited E. coli
adhesion in the Caco-2/HT-28 model [140]. In addition, Ross et al. suggested that the
anti-infective activity of MFGM is due to the interaction of bacteria with MFGM proteins
and glycoproteins rather than the interaction between MFGM and host cell receptors.
In addition, modifications to MFGM surfaces such as surface roughness, zeta potential,
MFG size, and phospholipid content can drastically impair the adhesive proprieties of
L. fermatum [124]. The MFGM can also inhibit ETEC hemagglutination, suggesting that
similar motifs are present on both membranes [141].

4.3.2. MFGM Proteins and Glycoproteins Potentially Targeted by STEC

No published studies have focused on which MFGM proteins are recognized by
STEC or which adhesins are involved. However, studies have been conducted on other
bacterial models (mostly beneficial). Guerin et al. used atomic force microscopy (AFM)
to show that the spaCBA pili of L. rhamnosus engaged with the MFGM. Another experi-
ment conducted by Novakovic et al. demonstrated, by blot overlay, binding of the ETEC
F4ac pili to various porcine MFGM or milk proteins, including lactadherin, butyrophilin,
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adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3 [142]. An extensive
literature search highlighted several MFGM proteins or glycoproteins that could interact
with bacteria (Table 1). As an example, Zg16 can bind peptidoglycan [143]. Milk whey
proteins such as lactoferrin, β-lactoglobulin, and α-lactalbumin can be adsorbed on the
MFGM by heat treatment [144,145] and can be bound by bacteria. Glycoproteins such as
mucins (MUC1 and MUC15), CD59, ECM proteins (tenascin, vitronectin), butyrophilin,
prolactin-inducible protein (mPIP), CD36, and alpha1-antichymotrypsin can be bacterial
lectin targets (Table 1). Among this non-exhaustive list, mucins could well be potential
targets for STEC. Mucins are highly glycosylated proteins known to adhere to bacteria.
Mucins constitute mucus, a secreted gel that binds the intestinal microbiota and protects the
epithelium from pathogens [146,147]. Additionally, EF-Tu, a ubiquitous bacterial protein
that can bind many proteins and mediate adhesion, could potentially interact with the
MFGM [148].

Table 1. MFGM proteins or glycoproteins that are potentially bound by STEC.

Bovine MFGM Components Bacterial Components References

Adipophilin * (ADPH) F4ac (E. coli) fimbria [142]
Alpha 1-antichymotrypsin (serpin) - [149]

Annexins A1, A2, A5 LPS (lipid A), OmpB, YadC (tip adhesin of Yad fimbriae) [150–152]
Apolipoprotein serum amyloid A protein OmpA [153]

Apolipoproteins LPS [154,155]
Butyrophilin * F4ac (E. coli) fimbria [29,142]

Calnexin LPS, peptidoglycan [156]
Cathelicidin 1 LPS, LTA [157]

CD36 * LPS, LTA [29,158]
CD5L protein - [159]

Elongation factor thermal unstable Tu
(EF-Tu) - [148]

Fatty acid-binding protein * F4ac (E. coli) fimbria [142]
Fibrinogen Fibrinogen-binding protein (MSCRAMMs), curli [160–165]
Galectin 7 LPS [166]
Gelsolin LPS, LTA [167]

Immunoglobulins Many bacterial proteins -
Integrin Many bacterial proteins [52,165,168–171]

Lactadherin * F4ac (E. coli) fimbria [142,172]
Lactoferrin OMPs [173]

Macrophage scavenger receptor LPS, LTA [174]
MUC1 *, MUC15 * Many bacterial proteins [175]

Polymeric immunoglobulin receptor (PIgR) Ig-mediated adhesion, direction interaction via adhesin [176,177]
Prolactin-inducible protein (mPIP) - [178,179]

Peptidoglycan recognition protein 1 - [180]
Protein disulfide-isomerase (PDI) - [181]

Toll-like receptor 4, 2 Many bacterial proteins [182–185]
Uromodulin Surface layer protein A, FimH [186,187]

Vimentin Many bacterial proteins [188]
Vitronectin Many bacterial proteins [189]

Zymogen granule protein 16 homolog B LTA, peptidoglycan [190]
β-lactoglobulin Spa pili [191,192]

MFGM proteins were obtained from [33,193,194]. * Major MFGM proteins.

Besides proteins, a strain-specific adhesion between milk phospholipids (MPLs) and
lactic acid bacteria (LAB) has been shown [195,196]. D’Incecco et al. showed that in the
case of the presence of Clostridium tyrobutyricum spores in raw milk, these spores can be
localized at the proximity of MFGs [90]. Like bacteria, the spore’s surface is decorated by
polysaccharides and anchored extracellular appendages that mediate lectin–carbohydrate
interactions [197,198]. However, the surface structure of Clostridium tyrobutyricum spores
involved in the association with MFG was not identified in the study. Interestingly, further
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experiments conducted by D’Incecco et al. used transmission electron microscopy (TEM) to
show that C. tyrobuctyricum interacted with the MFGM through an amorphous substance
containing IgA [199].

Milk provides not only nutrients but also protection to newborns through immunocom-
petent cells, antimicrobial peptides, oligosaccharides, immunoglobulins (Igs), cytokines,
growth factors, and lysosomes [200]. Bovine MFGs contain numerous immune-related
proteins including proteins with bacterial binding capacities. Immune proteins are well
characterized and known to recognize specific epitopes on pathogens. Immunoglobulins
and immune cells in milk reflect the mother’s pathogen exposure and can provide immunity
against some pathogens. Studies have shown that IgA, secreted-IgA (sIgA), and IgM are
concentrated in the cream layer and can adsorb onto human [201,202] or bovine [90] MFGM
surfaces. These adsorbed Igs may act as mediators of bacterial adherence to MFGs. Other
studies have demonstrated the efficacy of bovine Igs against various human pathogens
related to diarrhea [203–205]. Antibodies against pathogenic E. coli are common in samples
of human milk [206,207]. Several studies have also shown that bovine colostrum contains
antibodies to E. coli O157:H7 and other pathogens, regardless of whether the animals were
immunized (vaccinated) or not. These antibodies can confer protection against relevant
pathogens to humans [208–210]. Oliveira et al. showed that Igs could interact with ETEC
fimbrial proteins and block adhesion to host receptors [211]. It has also been reported that
K88-positive E. coli adhere to MFGs through IgA [212].

The spontaneous agglutination of MFGs in cold milk is due to the presence of im-
munoglobulins, called cryoglobulins [213]. Cryoglobulins are large molecules that pre-
cipitate at low temperatures (<37 ◦C) and disperse again on warming. Cryoglobulins are
probably involved in bacterial clarification during natural creaming [214]. Immunoglobulin
cell receptors are present on both the bacterial surface and MFGMs and, therefore, could
act as a bridge. A generic IgG receptor is present in cold-stored MFGM preparations, but
bacterial interaction has not been shown [215]. The polymeric immunoglobulin receptor
(pIgR) is present on intestinal epithelial cells and facilitates the transcytosis of Igs, especially
IgA, and immune complexes [177,216].

Toll-like receptors 2 and 4 (TLR2 and TLR4), which recognize foreign antigens, are
present at low levels on MFGMs [33]. For example, FimH, the adhesive tip from the Type
1 fimbriae of E. coli, binds to mannose, TLR4, and CD48 [183,217]. Furthermore, TLR2
recognizes lipoteichoic acid (LTA), peptidoglycan, lipoprotein, curli, and other pathogen-
associated molecular patterns (PAMPs) [184,185,218]. CD36 is a scavenger receptor that
binds lipopolysaccharide (LPS) and other ligands [219]. Cathelicidins are antimicrobial pep-
tides that can bind LPS [157]. Peptidoglycan recognition protein 1 (PRP1) is an antibacterial
protein that can kill Gram-positive bacteria by binding to peptidoglycans and interfering
with peptidoglycan biosynthesis [180].

5. Consequences of the STEC–MFG Association
5.1. Difficulties in Detecting STEC in Raw Milk Products

STEC detection in food matrices classically relies on four different steps: sample prepa-
ration; enrichment; detection; and confirmation by bacterial isolation. The enrichment step
consists of adding an enrichment broth to the matrix to enable growth of the target bacteria.
In the detection step, a genetic method is implemented to detect the presence of target
bacteria by PCR screening. Finally, the confirmation step is carried out. This confirmation
is based on isolation of target bacteria grown on selective media. Immunoconcentration
tools using magnetic beads spiked with antibodies can also be used in this step. The ISO
TS13136:2012 is the standard currently used to detect and isolate STEC belonging to O157,
O26, O103, O111, and O145 serogroups and carrying eae and stx genes in food samples.

STEC detection in raw milk cheeses is particularly challenging. First, bacterial DNA is
extracted from a specific volume of enrichment broth. Then, STEC target genes (eae, stx, and
genes encoding one of the five somatic antigens) are detected. However, the microflora of
cheese contains bacteria that carry some of the genes used to screen for STEC. For example,
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some non-STEC strains of E. coli (such as enteropathogenic E. coli (EPEC)) carry the eae gene
or contain phages carrying the stx gene. Some other bacterial strains can also carry the stx
gene, including Citrobacter freundi, Shigella spp., Acinetobacter, Aeromonas spp., Hafnia alvei,
Escherichia albertii, Escherichia cloacae, and enterotoxigenic E. coli (ETEC) [44].The presence of
these bacteria in raw milk cheese can lead to positive PCR results even though STEC isolates
are not present in the enrichment broth (false positives). Furthermore, the performance of
the methods (LOD) varies depending on the methods used and the matrices analyzed.

In general, STEC detection is more difficult in cheese than in meat. The LODs of the
different detection methods are approximately 5–10 cells/g and 10–50 cells/g for bovine
meat and raw milk cheese, respectively [220,221]. The presence of a richer flora and a higher
amount of fat in cheese compared with meat may be an explanation. As discussed above,
bacteria are preferentially found in contact with MFGs in raw milk products; however,
the available detection kits perform DNA extraction on the pelleted fraction. Moreover,
MFGs can interfere with DNA extraction methods by blocking spin column filters and
acting as a PCR inhibitor [222,223]. Lower efficiency of bacterial DNA extraction can
lead to false negative PCR results from enrichment broth samples. Several authors have
described this phenomenon for various milk origins and suggest performing the extraction
on both the cream and pelleted fraction. Sun et al. showed that cream harbors bacterial
species that may be underestimated when skimmed milk, rather than whole milk, is used
for DNA extraction [96]. Stinson et al. showed that a significant amount of human and
bacterial cells remains with the cream and that bacterial DNA profiles can vary between
fractions, especially for staphylococcal species [223]. The authors suggested that high-
speed centrifugation may be insufficient to pellet bacterial or eukaryotic cells from milk.
Furthermore, MFGs and proteins such as caseins can disrupt the interaction between
immunomagnetic beads and STEC during the confirmation step. Tween 20 can be added at
this stage to improve sample homogenization and block non-specific interactions [224].

Finally, STEC isolation to confirm the presence of the bacteria is also very difficult
in raw milk cheese because the cheese microbiota limits STEC growth on agar plates.
In addition, the different challenges encountered during cheese processing as well as the
stresses suffered by STEC during the detection protocol can lead to viable but nonculturable
(VBNC) isolates [225].

These studies emphasize the importance of using whole milk instead of skimmed
milk for DNA extraction, but MFGs can perturb downstream applications. To improve
the recovery rate of STEC in raw milk products, it seems essential to identify the nature of
the STEC–MFG association in order to dissociate the two before performing the detection
process. The identification of milk components involved in PCR inhibition and the improve-
ment of DNA purification methods would allow the development of new kits to extract
bacterial DNA from milk and cream. It should be noted that, despite these limitations,
available DNA kits are still very effective. Quigley et al. showed that commercial kits
provided very pure DNA suitable for PCR amplification from raw milk and raw milk
cheese [226]. Furthermore, ISO 6887 recommends the addition of Tween 80 when enriching
high-fat matrix to improve detection and bacterial isolation. However, no formal study
has shown a significant effect due to the addition of Tween 80. Finally, at the enrichment
temperature (37 ◦C or 41.5 ◦C), the lipids form a surface layer that may contain the desired
bacterial cells and contribute to the reduction of available oxygen and thus modify the
physiological state of the bacteria.

Figure 2 brings together the different concepts discussed in this section.
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Figure 2. Impact of MFGs on STEC detection in dairy matrix. STEC detection in food matrices
classically relies on 4 different steps: sample preparation; enrichment; detection; and confirmation by
bacterial isolation.

5.2. Impact of Creaming on the Presence of STEC in Milk

One of the industry’s goals should be a non-invasive method to eliminate pathogenic
bacteria in raw milk without affecting the nutritional qualities and raw milk microbiota of
the final product. Many techniques exist, such as bactofugation and microfiltration, [227],
but these techniques affect MFG structure [82] and also remove the raw milk microflora.
In our lab, we performed a raw milk skimming assay by electric centrifuge, and E. coli
were not found in significant numbers in the cream fraction [228]. Stronger centrifugal
forces are applied by the centrifuge; therefore, the STEC–MFG association is probably too
weak to overcome the centrifugal forces. However, it was reported that natural creaming
produces reduced-fat milk with a lower bacterial count and fewer somatic cells [229]. MFGs
spontaneously rise to the surface due to the difference in density between MFGs and the
aqueous phase (Stokes’ law) [230]. As previously discussed, STEC were predominantly
found in the cream layer after raw milk creaming [88]. Therefore, performing natural
creaming methods before cheese transformation could decrease the level of STEC in the
final product. However, no study has been conducted in experimental field conditions
(with low STEC contamination levels).

5.3. Anti-Adhesive Strategies

As bacterial adhesion is the first step of infection, inhibiting this step is a key strategy
for infection control. Competition for the natural binding sites of pathogenic bacteria by
mimetic receptors could inhibit pathogen attachment. Several natural food components
could act as efficient inhibitors of pathogen adherence [30,100,231–233], especially milk
components [29,234]. Moreover, numerous experimental studies have shown that the
association of bacteria with MFGs could prevent the adhesion of several enteropathogens
to enterocytes through mimetic receptors [142,172,235–240]. To avoid STEC adhesion to the
epithelium of the intestinal mucosa, the STEC–MFG complex must be maintained at the
site of STEC adhesion. Therefore, the expression of STEC genes involved in adhesion must
be able to occur in product and during the human digestive process.
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MFGM glycoconjugates are the main macromolecules involved in the anti-adhesive
properties of milk against enteropathogens [29,73]. The MFGM protein fraction shows sim-
ilarities to intestinal cells. Major MFGM proteins are conserved between species, although
there are variations in protein expression levels and molecular functions between species
and stages of lactation [241]. The MFGM was recently recognized as a high value-added
ingredient, and the valorization of this by-product is constantly increasing. The MFGM, or
some of its components, are added to infant milk formulas because of the MFGM’s benefi-
cial properties [241–245]. More studies should be conducted to identify the MFGM surface
glyco-epitopes recognized by STEC. These data could lead to pharmaceutical development
of a specific drug to treat STEC infections. Currently available therapeutic solutions for
STEC are controversial.

6. Conclusion and Future Directions

MFGs can associate with beneficial and pathogenic bacteria, including STEC. To date,
we do not have sufficient evidence to confirm the adhesion of STEC to bovine MFGs and
more specifically to the MFGM. However, the research discussed in this review highlights
a real association between STEC and MFGs that impacts bacterial pathogenicity (Figure 3).
Based on studies with other bacterial models, STEC adhesion factors may adhere to MFGM
glycoconjugates, resulting in impaired bacterial adhesion to host cells. The association
mechanisms remain unclear, but several phenomena are likely to be involved. The large
diversity of STEC isolates and the complexity of bacterial adhesion make it difficult to
study these mechanisms. Few studies have assessed STEC adhesion to the glycoconjugates
contained in raw milk products. We need to better understand the mechanisms of this
adhesion, including the molecular factors involved and the binding strength. Therefore, it is
important to identify and better characterize STEC adhesion factors and their implication in
the infection cycle. In addition, more complete studies should be conducted to elucidate the
location of this pathogen in raw milk cheese products and how the STEC–MFG association
changes once the product is ingested by humans. To ensure inhibition of STEC adhesion to
enterocytes, the STEC–MFG complex must be resistant to human digestive processes.

Research on the anti-adhesive properties of bovine MFGM components is recent
and needs to be further pursued as a new source of antibacterial molecules. In the long-
term, specific (glyco)-proteins derived from the MFGM could be developed as preventive
or therapeutic tools against STEC or other enterobacteria. Nevertheless, bacteria–MFG
adhesion is not specific to STEC and can lead to contrasting effects depending on the
bacterial species involved. For STEC or other pathogenic bacteria, the association has an
overall health benefit by reducing bacterial adhesion to host cells. In contrast, reducing the
adhesion of beneficial bacteria or probiotics may not be as beneficial. Parallel studies using
various bacterial models would improve our understanding of this phenomenon and may
help to identify a molecule that inhibits unwanted adhesions, while preserving beneficial
microflora adhesion. In addition, anti-adhesive molecule(s) could be used to improve STEC
detection in dairy matrices. MFGs can affect the detection process and decrease the chances
of isolating bacteria from a suspect product. Finally, the influence of the interaction of dairy
matrix and specific components such as MFGM on the regulation of STEC virulence genes
should be studied.
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Figure 3. MFGM as an anti-adhesive modulator of STEC. Ruminants (cattle, buffalo, goats, and
sheep) are the main reservoir of STEC. Infected ruminants harbor the bacteria in their gastrointestinal
tract without any symptoms of illness and shed them in their feces. Raw milk can reduce the
adhesion of STEC strains to host intestinal cells. The association of STEC with MFGs can be seen as
a host–bacteria adhesion facilitated by the epithelial origin of the MFGM and its similarities with
the membrane of intestinal cells. Both biological membranes interact through surface components.
Various glycoconjugates are anchored on the MFGM surface and can act as ligands. The molecules
involved in the association have not been identified.
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