%0 Journal Article %T Visible and Near-Infrared Multispectral Features in Conjunction with Artificial Neural Network and Partial Least Squares for Predicting Biochemical and Micro-Structural Features of Beef Muscles %+ Unité Mixte de Recherche sur le Fromage (UMRF) %+ Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH) %+ Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP) %A Aït-Kaddour, Abderrahmane %A Andueza, Donato %A Dubost, Annabelle %A Roger, Jean-Michel %A Hocquette, Jean-François, J.-F. %A Listrat, Anne %Z European "ProSafeBeef" Integrated Project FOODCT-2006-36241VetAgro Sup %< avec comité de lecture %@ 2304-8158 %J Foods %I MDPI %V 9 %N 9 %P 1254 %8 2020-09-08 %D 2020 %R 10.3390/foods9091254 %M 32911633 %K intramuscular lipids %K meat %K perimysium %K endomysium %K intramuscular connective tissue %Z Life Sciences [q-bio]Journal articles %X The objective of this study was to determine the potential of multispectral imaging (MSI) data recorded in the visible and near infrared electromagnetic regions to predict the structural features of intramuscular connective tissue, the proportion of intramuscular fat (IMF), and some characteristic parameters of muscle fibers involved in beef sensory quality. In order to do this, samples from three muscles (Longissimus thoracis, Semimembranosus and Biceps femoris) of animals belonging to three breeds (Aberdeen Angus, Limousine, and Blonde d'Aquitaine) were used (120 samples). After the acquisition of images by MSI and segmentation of their morphological parameters, a back propagation artificial neural network (ANN) model coupled with partial least squares was applied to predict the muscular parameters cited above. The results presented a high accuracy and are promising (R 2 test > 0.90) for practical applications. For example, considering the prediction of IMF, the regression model giving the best ANN model exhibited R 2 P = 0.99 and RMSEP = 0.103 g × 100 g −1 DM. %G English %2 https://vetagro-sup.hal.science/hal-03081589/document %2 https://vetagro-sup.hal.science/hal-03081589/file/foods-09-01254.pdf %L hal-03081589 %U https://vetagro-sup.hal.science/hal-03081589 %~ PRES_CLERMONT %~ OPENAIRE %~ ACL-SVSAE %~ UMRF %~ VETAGRO-ASI-BIS %~ VETAGRO-SUP %~ ITAP %~ VETAGRO-UMRF %~ MONTPELLIER-SUPAGRO %~ UDL %~ UNIV-LYON %~ INRAE %~ INRAEOCCITANIEMONTPELLIER %~ UMRH %~ PHASE %~ MICA-UNITES %~ TEST3-HALCNRS %~ MATHNUM %~ RESEAU-EAU %~ INSTITUT-AGRO