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Abstract (248 words) 

 

Changes in pharmacokinetic parameters of critical ill patients make the treatment of 

infections challenging, particularly when multidrug-resistant bacteria are involved. The aim of 

this study was to evaluate the ability of hemodialysis to reduce the exposure to high dose 

amikacin and prevent nephrotoxicity. Amikacin 50 mg/kg was administered intravenously to 

6 adult sheep once daily for 4 days. Sheep were divided into two groups according to the 

implementation (group 1) or not (group 2) of hemodialysis. In group 1, hemodialysis was 

performed for 4h, initiated 2h after starting amikacin infusion. Amikacin area under the curve 

(AUC) and trough concentrations (Cmin) were used as markers of amikacin-induced 

nephrotoxicity. The median hemodialysis amikacin clearance was 2.14 L/h (35.6 mL/min), 

14% of the mean total body clearance for 24 h. Hemodialysis reduced Cmin (group 1: 0.3 

µg/mL [0.3 – 1.1]; group 2: 1.4 µg/mL [1.1 – 3.9]; P = 0.0003) and time of exposure to a 

concentration exceeding 2.5 µg/mL (group 1: 99.7 % [99.7 – 99.8]; group 2: 99.9 % [99.8 – 

99.9]; P = 0.049). A trend toward reduced AUC with hemodialysis was observed (group 1: 

1450 µg/mL.h [1311 – 1716]; group 2: 3126 µg/mL.h [2581 – 3171]; P = 0.10). No sheep has 

developed acute kidney injury. In conclusion, hemodialysis seems interesting in reducing 

AUC and Cmin after injection of high-dose of amikacin, parameters known to be involved in 

its induced nephrotoxicity, in an experimental ovine model. 
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Abbreviations 

AKI: acute kidney injury 

AUC: area under the curve 

Clcr: creatinine clearance  

Cld: hemodialysis clearance of amikacin  

Clr: renal clearance of amikacin 

Cmax: maximal concentration  

Cmin: trough concentration 

CV: coefficient of variation 

ICU: intensive care unit 



MDR: multidrug-resistant bacteria  

MIC: minimal inhibitory concentration 

RRT: renal replacement therapy 

Vd: volume of distribution  

VPC: Visual Predictive Check 

 

1. Introduction  

 

Multidrug-resistant (MDR) bacteria are tremendously emerging in the intensive care 

unit (ICU) environment, increasing mortality and morbidity of critically ill patients [1]. The 

treatment of these patients is challenging as only few new drugs have been developed in 

recent years. New strategies need to be promoted in order to optimize the use of available 

antibiotics [2]. 

Aminoglycosides are important drugs for the treatment of sepsis and septic shock with 

involvement of Gram-negative pathogens [3–8]. Among the aminoglycosides, amikacin is a 

well-used concentration-dependent antibiotic.  Optimum antibacterial effect is obtained when 

the ratio between the maximal concentration (Cmax) of the drug and its minimal inhibitory 

concentration (MIC) is more then 8 [2]. This target is also related to a better clinical response 

[9]. For amikacin, the MIC of Enterobacteriaceae and Pseudomonas spp are 8 µg/mL for 

sensitive strains and 16 µg/mL for intermediate strains [10], indicating that to improve the 

antibacterial activity, Cmax should reach plasma concentrations ≥ 64 µg/mL or ≥ 128 µg/mL.  

Critically ill patients have modifications of their pharmacokinetic parameters, with 

increased volume of distribution (Vd) due to the large volume of administered fluids and 

increased vascular permeability resulting in interstitial fluid shifts [2]. Consequently, serum 

target concentrations of hydrophilic drugs such as amikacin are difficult to obtain. With a 

dose of amikacin of ≤ 30 mg/kg, a Cmax of ≥ 64 µg/mL is reached in less than 77% of patients 

[4,5,8,11]. Higher doses than 30 mg/kg may therefore be needed to achieve the clinical 

breakpoint in critically ill patients.  

Amikacin is a nephrotoxic agent with toxicity related to excessive antibiotic exposure, 

providing increased area under the time-concentration curve (AUC) and increased trough 

concentration (Cmin) [12]. Increasing the amikacin dose will increase these pharmacokinetic 

parameters, implying increased renal toxicity. With a dose of 25 mg/kg, a Cmin of > 5 µg/mL 

is observed in more than 50% of the patients [7]. Acute kidney injury (AKI) is reported in 



24% of ICU patients with 30 mg/kg of amikacin [5]. In this study, survivors had a Cmin 

significantly lower than non survivors [5].  

The use of renal replacement therapy to improve the elimination of the antibiotic and 

reduce its toxicity after the administration of high dose of amikacin has been reported with 

success in two cases [6] and was associated with a favorable clinical response in 8 of 15 

patients with MDR-induced sepsis [3]. 

Despite medical and economical concerns, only few data is available on this subject. 

The aim of the present study was to compare the elimination of a high dose of amikacin (50 

mg/kg) in an ovine model between a population of dialyzed and non-dialyzed sheep. We 

hypothesized that intermittent hemodialysis may reduce the risk of amikacin nephrotoxicity. 

 

2. Material and methods  

 

 This study was conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals and approved by the Ethics Committee of VetAgro Sup (Campus 

Vétérinaire de Lyon) with the agreement 1548-V2. 

 

2.1. Animals 

 

Six adult female sheep weighing from 63 to 81 kg were included in this study. A 14-

days acclimation period was implemented before the study. Animals were fed with hay ad 

libitum and with alfalfa pellets and given free access to water. All sheep were screened by 

physical examination, complete blood cell count, serum biochemistry, coproscopy and 

serologic test for Brucella and Coxiella. 

 

2.2. Animal preparation  

 

Animals were anesthetized with intramuscular injection of xylazine (0.1 mg/kg) and 

midazolam (0.2 mg/kg), and a 11.5 Fr double lumen catheter (Hemo-cath
®
, Medical 

Components, Harleysville, PA) was placed with the transcutaneous Seldinger technique [13] 

in the right jugular vein. A 14 CH Foley urinary catheter (Uromedia
®
, Euromedis, Neuilly-

Sous-Clermont, France) was also placed and a one-day recovery period was then allowed.  

 

2.3. Experimental protocol 



 

The experimental protocol is detailed in Fig. 1. Urine was collected over one hour with 

the conventional technique [14] before amikacin administration for urinary creatinine 

clearance calculation every day from day 2 (considered as the reference value) to day 6 [15]. 

A single 50 mg/kg dose of amikacin was then administered intravenously over a 30-min 

period through the jugular vein every day from day 2 to day 5. Sheep were divided into two 

groups: with hemodialysis (group 1, n=3), without hemodialysis (group 2, n=3). In group 1, 

hemodialysis was initiated 2 h after the beginning of the infusion of amikacin from day 2 to 

day 5 and was performed during 4 h with a Prismaflex dialyzer unit (Prismaflex
®
, Hospal, 

Meyzieu, France) equipped with a ST100
®
 set constitute with an artificial kidney with a 

AN69ST
®
 membrane (Hospal, Meyzieu, France). Blood was pumped at a rate of 160 mL/min. 

The dialysate fluid flow rate was set at 1200 mL/h. The dialysate solution used was Hemosol 

B0
®
 (Hospal, Meyzieu, France) supplemented with potassium at 4.5 mmol/L. A low 

ultrafiltration rate was set at 100 mL/h offset by the infusion of a predilution replacement 

solution. Heparin was used for anticoagulation at 1000 units every hour. In group 2, 

hemodialysis was not performed. 

 

Figure 1: Study protocol 

 

 

 

 



2.4. Sampling and analytic method 

 

Blood samples were collected from the jugular vein at 1, 2 and 6 h after the beginning 

of the amikacin infusion during day 2; at 0, 1 and 6 h after the beginning of the infusion 

during day 4 and at 0 h after beginning the infusion during day 3, 5 and 6. Blood samples 

were collected in heparinized tubes and were centrifuged. Urine samples were collected every 

morning for one hour (day 2 to day 6) before amikacin administration and their volume was 

measured. Five mL of each urine sample were immediately stored at –80°C and protected 

from light until creatinine analysis. Creatinine was measured with a colorimetric technique 

realized by Konelab 30
®
 (Thermo Fisher Scientific, Waltham, MA). The minimum detectable 

concentration was 1 mg/L in serum and 20 mg/L in urine. Amikacin was measured by an 

immunoturbidimetric technique realized by Architect c8000
®
 (Abbott Laboratories, Abbott 

Park, IL). The minimum detectable concentration in serum was 0.6 µg/mL. 

 

2.5. Nephrotoxicity and AKI 

 

Comparisons of AUC and Cmin between the two groups were used to evaluate the 

impact of hemodialysis on nephrotoxicity. As toxicity is associated with amikacin exposure, 

the time spent with a concentration greater than 2.5 µg/mL was studied. The French National 

Agency of Drug Safety recommends not to administer another dose of amikacin if the Cmin is 

not below the threshold of 2.5 µg/mL [16]. The AKI was defined by an increase in serum 

creatinine concentration of ≥ 50% and/or a decrease in the glomerular filtration rate (GFR, 

evaluated by the urinary creatinine clearance) of ≥ 25% between baseline and last day values. 

 

2.6. Pharmacokinetic analysis 

 

The pharmacokinetic analysis was based on a compartmental approach using a two-

compartment model, as described for amikacin in patients with renal replacement therapy 

[17]. This model was described by a system of ordinary differential equations as follows: 

dX(1)/dt = -[(K12 + Kel) * X(1)] + K21 * X(2) 

dX(2)/dt = -K21 * X(2) + K12 * X(1) 

Where X(1) is the amount of amikacin in the principal compartment and X(2) is the 

amount of amikacin in the second compartment. K12 and K21 are the transfer rate constants 

and Kel is elimination rate constant.  



The Vd was linearly linked to the body weight. Elimination is described by renal 

elimination linked to creatinine clearance, elimination by hemodialysis in sheep of group 1 

and non-renal elimination. The analysis was performed using the non-parametric modeling 

software Pmetrics
®
 (LAPKB, Hollywood, CA) [18]. 

Individual pharmacokinetic parameters were determined by Bayesian estimation for 

each sheep. Adjusted coefficient of determination, bias (mean weighted prediction error) and 

imprecision (bias-adjusted mean weighted squared prediction error) of concentration 

predictions were used to measure predictive performance. The validation of the model was 

made by Visual Predictive Check (VPC) [19]. 

The residual error was modeled as a polynomial function (describing the assay error) 

multiplied by a parameter (gamma) taking into account uncertainties of the clinical 

environment. Error = gamma × (3.62 + 0.000975Y + 0.0.003454²), where Y is observed 

concentration 

 

2.7. Statistical analysis 

 

 Statistical analyses were performed using Prism 6
®

 software (GraphPad 

Software, Inc., La Jolla, CA). Continuous variables were expressed as means ± standard 

deviation (SD) or median (interquartile range). The value of 0.3 µg/mL was used for amikacin 

concentration lower than 0.6 µg/mL, as non-measurable by the automate. Differences 

between groups were assessed using the Mann-Whitney U test. A value of P < 0.05 was 

considered to be statistically significant. 

 

3. Results 

 

3.1. Pharmacokinetic parameters 

 

 The pharmacokinetic parameters are presented in Table 1.  

 

Table 1. Pharmacokinetic parameters 

(Clr: renal clearance of amikacin (without unit, it must be multiplied by the creatinine 

clearance), Clcr : creatinine clearance (mL/kg/min), Cld: hemodialysis clearance of amikacin 

(L/h), Vd: volume of distribution (L/kg), CV: coefficient of variation (%)) 

 



 Median Standard deviation CV 

Clr 0.04 0.01 22.55 

ClCr 2.05 0.58 31.88 

Cld 2.14 0.48 20.18 

Vs 0.19 0.03 17.34 

 

3.2. Predictive performance 

 

 The model had good predictive performance: bias of - 0.55 mg/L, imprecision of 

3.94 mg
2
/L

2
 and adjusted coefficient of correlation of 0.94 between predicted and observed 

amikacin concentrations. These predictive performances were improved after Bayesian 

estimation of individual pharmacokinetic parameters (bias = - 0.02 mg/L, imprecision = 0.76 

mg
2
/L

2
, adjusted coefficient of correlation = 0.99) (Fig 2). 

 The model was validated by VPC: only three concentrations were not included in 

the 95% confidence interval (Fig 3).  

 

Figure 2: Representation of observed versus population predicted concentrations (A), and 

observed versus individual predicted concentrations (B) 
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Figure 3: Visual predictive check for the 5th (red) and the 95th percentile (blue) 

 

 

 

 

3.3. Cmax 

 

 The Cmax predicted by the model were used. The medians were 214.1 µg/mL 

(208.6 – 272.1) in group 1 and 208.3 µg/mL (165.8 – 214.2) in group 2 (P = 0.09) (Table 2). 

 

Table 2. Maximal concentrations (Cmax), minimal concentrations (Cmin) and area under the 

time-concentration curve (AUC) of amikacin after the injection of 50 mg/kg. 

 Group 1 (hemodialysis) Group 2 (no hemodialysis) P 

 Median 25
th

 

percentile  

75
th 

percentile 

Median  25
th

 

percentile  

75
th

 

percentile  

Cmax 

(µg/mL) 

214.1 208.6 272.1 208.3 165.8 214.2 0.09 

Cmin 

(µg/mL) 

0.3 0.3 1.1 1.4 1.1 3.9 0.0003 

AUC 

(µg/mL.h) 

1450 1311 1716 3126 2581 3171 0.10 
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3.4. Impact of hemodialysis on pharmacokinetic parameters 

 

 The median clearance of amikacin by hemodialysis was 2.14 L/h (35.6 mL/min), 

16% of the total body clearance for 24 h. The Cmin was significantly lower in group 1 

compared with group 2 (respectively 0.3 µg/mL [0.3 – 1.1] and 1.4 µg/mL [1.1 – 3.9]; P = 

0.0003). The Figure 4 represents the evolution of Cmin during the study in both groups: an 

increase was observed in sheep from group 2 the last two days. The median AUC tended to be 

lower in group 1 compared with group 2 (respectively, 1450 µg/mL.h [1311 – 1716] versus 

3126 µg/mL.h [2581 – 3171]; P = 0.10), although this difference did not reach statistical 

significance. The time with serum amikacin concentration exceeding 2.5 µg/mL was 

significantly lower in group 1 compared with group 2 (99.7 % [99.7 – 99.8] versus 99.9 % 

[99.8 – 99.9]; P = 0.049). 

 

Figure 4: Minimal concentrations (abscissa: time, D: day; ordinate: Cmin (µg/mL); triangles: 

group 1(with hemodialysis), circles: group 2 (without hemodialysis)) 

 
 

3.5. Acute kidney injury 

 

 Results of serum creatinine concentration and clearance of urinary creatinine are 

presented in Table 3. All the serum creatinine concentrations were in the normal range. Some 



variations in urinary creatinine clearance were observed during the study. Based on the 

previously defined criteria, no sheep developed acute kidney injury.  

 

Table 3. Individual creatinine serum concentrations and urinary creatinine clearance measured 

during the study (D: day of the study, UV: usual values).  

Group 1: sheep with hemodialysis, group 2: sheep without hemodialysis. 

 Serum creatinine concentration 

(mg/L, UV [39]: 8 – 20 ) 

1-h urinary creatinine clearance 

(mL/kg/min, UV [15]: 1.12 – 1.52 ) 

 

Group 1 Group 2 Group 1 Group 2 

D2 14.1 8.0 0.7 2.1 

D3 13.1 8.4 0.8 1.8 

D4 12.9 7.9 1.4 1.0 

D5 14.3 7.6 0.6 2.2 

D6 13.8 8.0 1.5 1.7 

D2 10.3 8.1 2.0 2.2 

D3 9.0 8.0 2.2 2.2 

D4 9.3 7.3 2.0 1.1 

D5 9.7 7.5 1.2 2.1 

D6 9.4 7.4 2.5 2.2 

D2 12.0 8.2 1.5 2.6 

D3 12.6 7.8 1.7 2.3 

D4 9.4 7.0 2.1 2.5 

D5 9.9 7.2 2.2 2.7 

D6 11.3 8.2 1.5 2.4 

 

4. Discussion 

 

 This study showed that hemodialysis reduces the Cmin and time of exposure to a 

concentration of at least 2.5 µg/mL after the injection of a high dose of amikacin. A trend 

toward reducing AUC with hemodialysis was also observed. Thus, this technique seems 

interesting in preventing nephrotoxic risk induced by a high-dose aminoglycoside regimen. 

 

 Amikacin has a dose-dependent bactericidal efficacy. The usual therapeutic goal 

is a Cmax/MIC ratio ≥ 8 [9], yielding serum concentrations exceeding 64 µg/mL for sensitive 

strains or greater than 128 µg/mL for strains with intermediate resistance [10]. 

Pharmacokinetic parameters of hydrophilic antibiotics are strongly altered in patients with 

sepsis, due to a major increase in the volume of distribution in these patients. This increase 

seems to be correlated to the severity of sepsis [8]. So higher loading doses may be required 

to obtain clinically relevant peak concentration values, as is occurring in practice. However, 

several studies highlight the difficulties encountered in these patients to achieve the 

therapeutic goals even with doses as high as 15 to 30 mg/kg. In these studies, a serum 



concentration of amikacin ≥ 64 µg/mL was obtained in less than 77% of cases [4,5,8,11]. That 

is why we chose a 50-mg/kg amikacin dose. In the current study, we obtained high peaks, 

with median Cmax close to 210 µg/mL. Nevertheless, the volume of distribution of amikacin in 

sheep was 0.2 L/kg, comparable to that described in the literature [20,21], but half that of the 

mean volume of distribution of a human patient in ICU [4,5,7,11]. For an increased volume of 

distribution in a critically ill patient, the dose of 50 mg/kg would provide a median Cmax of 

about 100 µg/mL, higher than 64 µg/mL and relatively close to the second therapeutic goal. It 

therefore seems appropriate to use that dose in clinical practice for the treatment of infection 

caused by bacteria with a MIC of 8 µg/mL. The administration of higher doses of amikacin, 

associated with longer sessions of hemodialysis should be considered for intermediate 

resistance strains. 

 

 All renal replacement techniques are efficient for the elimination of amikacin 

from the blood. Continuous hemodiafiltration gave an amikacin clearance of 40 mL/min or 

around 89% of the mean total body clearance [22]; intermittent hemodialysis gave a clearance 

of 37.5 mL/min amikacin, approximately 21% of total clearance (for hemodialysis sessions of 

3 to 4 hours) [23]. In the current study, the clearance of amikacin related to hemodialysis was 

very close to values found in the literature: clearance of 35.6 mL/min or 14% of total 

clearance for sessions of 4 h. The hydrophilic nature of amikacin and its low protein binding 

fraction make possible removal with renal replacement therapy by diffusion, convection and 

adsorption on the membranes of the artificial kidney [22–24]. Few studies exist regarding the 

removal of amikacin by different renal replacement therapy so it is difficult to determine 

which technique is the most effective. Some authors emphasize the superiority of 

hemodiafiltration over hemodialysis for the treatment of renal failure [25]. However, 

comparison of studies is complex, considering the differences between the renal replacement 

therapy parameters in the studies, as the elimination of amikacin seems to be correlated with 

these parameters [26]. The choice of hemodialysis in our study is based on literature and the 

technical expertise of our team: although some studies show a reduction of side effects with 

hemofiltration or hemodiafiltration, this benefit remains to be confirmed [27–29]. In addition, 

there is no consensus on the best choice of renal replacement therapy, and all are still used 

today [3,22,26]. The choice of intermittent sessions versus continuous renal replacement 

therapy was a technical choice: continuous renal replacement therapy could be technically 

complex in animals. Besides, continuous techniques have not shown their superiority over 

intermittent sessions [30,31]. 



 

 The accumulation of aminoglycosides in renal tubular cells is responsible for 

their nephrotoxicity and limits their use, especially in critically ill patients [32]. The toxicity is 

correlated to the exposure, expressed as Cmin or AUC [12]. In the current study, even with this 

small sample, the Cmin and time spent above a concentration >2.5 µg/mL were significantly 

lower in the dialyzed sheep. The AUC also tended to be lower in this group. These results 

demonstrate the effect of hemodialysis in the prevention of nephrotoxicity. Similar findings 

were described in a retrospective study [3] and a case report [6]. Despite the administration of 

high doses of aminoglycosides, Cmin remained low. There was no direct link between Cmax 

and toxicity: indeed, renal accumulation was saturated when the serum concentration of 

amikacin was exceeding 15 µg/mL [6]. So theoretically, there is no limitation to increase the 

administrated dose of amikacin for a patient if elimination is increased, which is possible with 

renal replacement therapy. As simulations show that to obtain a satisfactory clinical response 

against bacteria with MIC = 16 µg/mL, the administered doses of amikacin caused AKI in 

100% of the patients [32], combination with renal replacement therapy seems to be a good 

clinical choice. 

   

 No sheep developed AKI in our study. This observation could be explained by 

the short period of experimentation over which the study was conducted and by the absence 

of hemodynamic alterations in healthy sheep. The occurrence of AKI induced by 

aminoglycosides correlates with the duration of treatment in humans [33]. Acute kidney 

injury may appear after more than 5 to 7 days of treatment [34]. In an experimental model of 

AKI induced by the administration of high doses of gentamicin in healthy dogs, 16 days of 

treatment were needed to observe the occurrence of AKI diagnosed with an increase of ≥ 50% 

in serum creatinine concentration [35]. In that study, the measurement of serum creatinine 

concentration did not seem to be the optimal early biomarker to identify AKI induced by 

aminoglycosides [31]. Indeed, neutrophil gelatinase-associated urinary lipocalin (NGAL) was 

able to diagnose AKI over a week before the increase in serum creatinine [35].  

 

 The current study has several limitations. First, the small number of animals 

limited the conclusion of this study. In particular, although the median AUC was clearly 

lower in dialyzed sheep, this difference did not reach statistical significance probably because 

of lack of power. Experimentation with large animals is difficult and costly, limiting the use 

of more animals. However, using a mathematical model allowed increasing the amount of 



data without increasing the number of blood samples, which is an important ethical concern. 

The choice of ovine model can also be discussed. It has been chosen for several reasons. First, 

sheep are very calm animals. So unlike other animal models, it is not necessary to anesthetize 

them for the hemodialysis sessions. This is an advantage because anesthesia is known to 

induce changes in renal perfusion, which could make the interpretation of the results more 

difficult [36,37]. Second, our team has much clinical experience with hemodialysis in sheep. 

However, this model has some limitations. There is no information in the literature about the 

nephrotoxicity of amikacin in sheep. In addition, sheep have rapid elimination [20,21] 

compared with critically ill patients [38], leading to low accumulation of amikacin in blood 

after several days of treatment. In this regard, the healthy sheep model is not fully 

representative of the pharmacokinetics of amikacin observed in ICU patients. 

 

5. Conclusion 

 

 The current study shows, in a sheep model, that hemodialysis reduces Cmin, 

exposure time to amikacin and AUC after injection of high dose of amikacin (50 mg/kg), 

responses that are known to be involved in the risk of nephrotoxicity of amikacin. Renal 

replacement therapy sessions may thus be useful in preventing kidney failure when treating 

infections with multidrug-resistant Gram-negative bacteria, with intermediate sensitivity to 

amikacin, requiring the administration of high doses of amikacin. Further study is required to 

evaluate this technique in ICU patients. 
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