Efficient Provenance-Aware Querying of Graph Databases with Datalog - Données et Connaissances Massives et Hétérogènes
Communication Dans Un Congrès Année : 2022

Efficient Provenance-Aware Querying of Graph Databases with Datalog

Yann Ramusat
  • Fonction : Auteur
  • PersonId : 1087951

Résumé

We establish a translation between a formalism for dynamic programming over hypergraphs and the computation of semiringbased provenance for Datalog programs. The benefit of this translation is a new method for computing the provenance of Datalog programs for specific classes of semirings, which we apply to provenance-aware querying of graph databases. Theoretical results and practical optimizations lead to an efficient implementation using Soufflé, a state-of-the-art Datalog interpreter. Experimental results on real-world data suggest this approach to be efficient in practical contexts, competing with dedicated solutions for graphs.
Fichier principal
Vignette du fichier
main.pdf (600.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03664928 , version 1 (11-05-2022)

Identifiants

  • HAL Id : hal-03664928 , version 1

Citer

Yann Ramusat, Silviu Maniu, Pierre Senellart. Efficient Provenance-Aware Querying of Graph Databases with Datalog. GRADES-NDA 2022 - Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), Jun 2022, Philadelphia, United States. ⟨hal-03664928⟩

Partager

More